

LTC Bruce L. Gwilliam, USA, Special Projects Officer
Office of the Deputy Under Secretary of Defense (Science & Technology)
Presentation to NDIA, October 12, 2000

DoD Science & Technology Mission

To ensure that the warfighters today and tomorrow have superior and affordable technology to support their missions, and to give them revolutionary war-winning capabilities.

Future Revolutionary Capabilities

DUSD (S&T) Priorities (2000)

- Basic Research
- Five Focus Areas
 - Chemical & Biological Defense
 - Information Assurance
 - Hardened & Deeply Buried Targets
 - Smart Sensor Web
 - Cognitive Readiness
- Cross Cutting Initiatives
 - Software Intensive Systems
 - High Performance Computing
 - Modeling and Simulation
- Technology Transition Watch/Exposition
- S&T Pilot Laboratory Program

Complete Situation Awareness

Real-time Imagery Micro-Weather Moving Targets Integration

Physical Models
Dynamic Data Bases
Micro Sensors
Wireless Communications
Next Generation Internet

Vision: An intelligent, web-centric distribution and fusion of sensor information . . . that provides greatly enhanced

situational awareness, on demand, to Warfighters

at lower echelons.

"... emphasizes large arrays of local sensors joined with other assets: imagery, weather, weapons, simulations, etc. . . ."

- Enhanced situational awareness
- On-demand intelligent information
 - Images, weather, weapons, etc.
- Available to lower echelons
- Rapid weapon response

Local Situational Awareness Through Netted, Processed, Low Cost Sensor Arrays

Resolution Time

Smart SensorWeb

Sensor Technologies

TV

Uncooled Thermal

LADAR

Weather

Acoustic

Magnetic

COTS/MOTS

MEMS

ATR

Computers

Sensor Fusion

Displays

Wireless

Networks

Robotics

GPS

Small Areas £ 1km2 Response Times £ 1 min Locations Errors £ 1 mil

Spatial Resolution £ .3 m

Current ISR

Sensor Technologies

ATR

MIMC

SAR, IFSAR **GMTI** HRR

Cooled Thermal

I ADAR **Panchromatic**

Spectral

Unique SSW Capabilities

- Urban Canyons
- Subways, Sewers
- Difficult Rural Terrain
- Heavily Forested Areas
- Track Slow & Fast Objects
- Rapid Response Time

Data Links

Hi Perf Comp

UAV

GPS

Large Areas £ 100 km2 Response Times 3 1 min Locations Errors 3 1 km Spatial Resolution .3 - 30m

Technical Structure

IR Micro Camera Program

- UL3: Ultra low cost FLIR for day/night imaging:
 - 90 Grams (including optic)
 - 600 mW @ 3.5V
 - Development complete in July 00

Detection of Walking Man Target

	Sensor Field of Regard/Range		
FPA	40° FOV	15° FOV	
160x120	FOR = 164m/ Range= 240m (165m)	167m/ 640m (440m)	
320x240	328m/ 480m (330m)	334m/ 1280m (880m)	

Assumes Line of Sight.
Issue: Terrain Complexity
vs. Camera Range/Cost

Target: Walking Man (0.75m/2.0° C)

50% (70%) Detection/0.75 cycles on target

Atmosphere: 80%/km

Examples of Mini-UAV Projects

Organic Small Unit Capability

Surrogate UAVs Candidates

Thermal sensor

Para-Eyes (NVESD/NRL)

Mini Air Vehicles (DARPA)

(NVESD FY00 Congressional Plus Up)

36 inches

25 lbs

8 lbs

CCD

240 x 320 (Growth)

Oil/Alcohol or MOGAS

Wingspan

14.7 sq ft chute

0.7 lbs

240 x 320 (Growth)

36 inches

2.25 lbs

6.5 lbs

0.56 lbs (9 oz)

Payload Weight

Max TO Weight

120 x 160 CCD

CCD

240 x 320 (Growth)

Fuel

Sensor

Battery Battery

NVESD /AATD/AMCOM MOU to Develop an Integrated Sensor w/ Mini-UAV

LOCAAS Characteristics

Guidance Integrated Safe/Arm and Fuzing

- Optimal Fuzing Time
- Aimpoint Selection

INS/GPS

- Midcourse Guidance
- Flexible Search Pattern

Miniature Turbojet

- Standoff Range
- Large Search Area

Solid State LADAR Seeker

- Large Field of Regard
- Autonomous Target Acquisition
- Simplified Mission Planning

Length 31"
Wingspan 47"
Box size 8"x10"
Weight 85-95 lbs

Multi-mode Warhead

- Optimized Lethality
- Minimize Collateral Damage

LADAR Automatic Target Recognition Captive Flight Test Results

Notional Weather Sensors & Data

Thermometer/ Hygrometer

Anemometer

Ceilometer

Visibility / Precip Type

Radiometer

Digital Camera

Standard Measurements (all sites):

- Temperature / Humidity
- Wind Speed and Direction

Also at Primary Stations:

- Cloud amount and ceiling height
- Visibility
- Precipitation rate and type
- Solar radiation
- Visible camera image

Data Rates:

- Primary sites: 1-sec sampling, 1-min avg
- Remote sites: 5-sec sampling, 5-min avg,
 15-min data collection

Data Assimilation and Fusion Global/Mesoscale/Tactical/Nowcast

NOGAPS:

- FNMOC spectral model, T159/L24
- Data assimilation; 0-10 day guidance
- Provides boundary conditions for COAMPS coarse mesh

COAMPS:

- FNMOC nonhydrostatic model, < 9 km/L30
- Globally relocatable; Data assimilation
- Explicit moist physics; 0-72h guidance
- Provides boundary conditions for on-scene COAMPS coarse mesh

TAMS/RT: 3 km resolution

On-scene tactical data assimilation

WEATHER WEB NOWCAST:

- Fuse observations and model output
- Common battlespace environment
- Tactical end users; 0-6h guidance

January 1999

DENTAL ORTHOPEDIC ELECTRO MEDICAL SURGICAL/MEDICAL IMAGING/DIAGNOSTICS

The Digest of Medical Design Engineering News www.medicaldesigner.com

Warfighter Physiological Status Monitoring

Marine Data - September 1999

Physiologic Stress Index (Subject 12, Load 126.6 Kg, Sept 8 - 9 1999)

(Am. J. Physiol. 275(44):R129, 1998)

Prototype NRL Chemical Agent Detectors

"Badge Dosimeter" Format

NRL-CANARY II UAV/Ground Applications

P.O.C: R. Andrew McGill NRL MS&T Division, Code 6375 Tel: 202-767-0063

Email: amegill@ccf.nrl.navy.mil

NRL-BEAGLETTE "Toss-&-Seek Applications"

ISCAD (IMS-SAW CAD)
Binary Detector/UAV Compatible
Ultra Low False Alarm

Model of Smart SensorWeb

SUO-SAS

Integrated Information Concept

Weather

SSW Simulation Testbed Integration Concept

SOF UAV's

0031

Maverick

Pointer

SOF Web

- Collection -Sensors & Platforms - Computation - Retrieval & Analysis

Display & Visualization - Connotation -

Integrated, Continuous, Local, Sensor Collection - Concept -

Notional Objective System

Echelon	Sensors	Communications	Database & Processing	Information Visualization
Individual Soldier	Ported Wireless Visible & IR camera	Body WLANThroat to Text Commo	Local video compression	EarphoneMiniaturized /eye-mounted display
Fire Team	Toss able Local wireless visible and IR cameras	 Local Low-Medium bandwidth data link 	Local video Compression & force dispositionVSAM	 Personal display
Squad	Emplace able mid-range wireless video & acoustic sensors	 Local Medium bandwidth data link 	Local video compression & force dispositionVSAM	 Personal Display
Platoon	UGV & Emplace able long-range video & acoustic sensors	 Medium-High bandwidth data link 	 Local video compression , force disposition & status update VSAM 	 Personal Display
Company	• UAV & UGV	 High bandwidth data Link 	 Local video compression & multi-sensor fusion VSAM 	Mobile TOC
Battalion	Multiple UAV & UGVDisplaced Acoustics	 High bandwidth data Link 	 Local & external Information Fusion VSAM 	Fixed TOC

Additional Sensor Functions

- ChemBio
- Physio-Med
- Logistics/Maint
- Commo
- Location
- Weather
- Weapons
- Others

Program Execution

Experiment Plan

The System Driver Experiment # 1 Value of the **Information Products** Assess each product: Very useful Useful Somewhat useful Not useful

The Functional Components

Experiment # 2

Information Architecture

- · Assess needed bandwidth
- Assess various protocol

Experiment # 3

Sensors

- Assess power constraints
- Assess low cost sensors

Experiment # 4

Data Processing

- Assess ATRs, distributive processing
- Assess collaborative sensors
 - Sensor/information fusion

Experiment # 5

Information Visualizations

- Assess product usefulness as function of interface
- Demonstrate simulation/live sensor fusion

Key Integrated System Issues (Optional)

Experiment # 6

Mobility

- Assess capability to enter unprepared terrain
- Demonstrate ability to rapidly simulate unprepared area

Experiment # 7

Scalability

- Assess issues associated with full battalion operations
- Demonstrate high resolution large battalion simulation

Revised Program Schedule

	FY 00	FY01	FY 02
Test-bed • Initiation • Operations			
Primary Experiments Information Products Information Arch Sensor Applications Distributed Processing Information Visualization Scalability (Optional) Mobility (Optional)	Δ	Δ	Δ 🛕
Multinational and ACTD Collaboration Exchange Meetings/ACTD Discussions ACTD Conceptual Design & Investment Pendman		ΔΔΔΔ	Δ
Investment Roadmap Transition			

SSW Participants

- Army
 - ARL,
 - ARIEM,
 - TMDE,
 - TEC,
 - NVESD,
 - CECOM,
 - ARO,
 - DismountedBattlespaceBattlelab
- Air Force
 - AFRL/Eglin
 - AFRL/Rome

- Navy
 - NRL,
 - ONR,
 - SPAWAR,
 - OPNAV,
 - NAWCWD
- USMC
 - MCWL
- FFRDC
 - Lincoln Labs,
 - IDA,
 - SEI

- SOCOM
 - OST
- DARPA
 - SUO-SAS
 - SensIT
 - VSAM
- DMSO
- DTRA
- Industry
 - Casio
 - Sony
 - McQ

International: Germany, Sweden, England, Canada, & Australia

Next meeting 24-26 October, Lake Constance, Germany

Leveraged Efforts

Program Elements and Project Codes
ImageWeb
Army WEBS
Army APLA
Airborne Sensor Platforms
WeatherWeb
Atmospheric Investigations
Battlefield Environment & Signature Research
University Partnering for Operations [Ar & AF]
WeaponsWeb
Powered LOCAAS ATD
Cruise Missile Real-Time Retargeting
SimulationWeb
Integrated Sensor Modeling and Simulation
Antipersonnel Landmine Alternatives
Joint Countermine ACTD Simulation
Inormation IntegrationWeb
Consistent Battlespace Picture
Joint Battlespace Infoshpere
METOC Architecture Study
Dynamic Database
General Intelligence Processor
High Performance Computing
Global Awareness Virtual Testbed

JCS/J6V Multi-National Engineering Effort

SUO/SAS

Technology Transfer Mechanisms MURIS 13Projects SBIRS 10 Subjects: 6+ Proposals Each APBI: Commercial Solicitation 24 Companies 47 Proposals 10 Further Reviewed 5 Funded

Involvement in Ongoing ACTDs

Military Operations in Urban Terrain Personnel Recovery Pathfinder CEASAR (Potential)

DARPA Programs

SUO-SAS SenseIT VSAM

ACTDs

- Involvement in Ongoing ACTDs
 - Military Operations in Urban Terrain
 - Personnel Recovery
 - Pathfinder
 - CEASAR (Potential)
- SSW Working Group
 - ACTD Staff
 - Services
 - JFCOM, SOCOM
 - SSW Staff
- Possible Outcomes
 - Stand-alone ACTD
 - Multiple ACTD efforts
 - Support existing ACTDs
 - ATD

DoD S&T is a Partnership

Stable, Long Term Investment

Service Labs

DARPA

High Risk, High Payoff

Expanded Resource Base

Interagency

Maximum National

Coalition Capability

New Ideas, Knowledge

Universities Industries

Innovation, Transition

Technical Superiority is Critical for National Security.

In peace, it provides deterrence; In crisis, it provides options; In war, it provides an edge.